互斥和同步
# CPU cache结构和缓存一致性(MESI协议)
在多核CPU中,内存中的数据会在多个核心中存在数据副本,某一个核心发生修改操作,就产生了数据不一致的问题。而一致性协议正是用于保证多个CPU cache之间缓存共享数据的一致。至于MESI,则是缓存一致性协议中的一个,到底怎么实现,还是得看具体的处理器指令集
# 几个概念
# cache写操作
A. write through(写通):每次CPU修改了cache中的内容,立即更新到内存,也就意味着每次CPU写共享数据,都会导致总线事务,因此这种方式常常会引起总线事务的竞争,高一致性,但是效率非常低;
B. write back(写回):每次CPU修改了cache中的数据,不会立即更新到内存,而是等到cache line在某一个必须或合适的时机才会更新到内存中;
无论是写通还是写回,在多核环境下都需要处理缓存cache一致性问题。为了保证缓存一致性,处理器又提供了写失效(write invalidate)和写更新(write update)两个操作来保证cache一致性。
A. 写失效:当一个CPU修改了数据,如果其他CPU有该数据,则通知其为无效;
B. 写更新:当一个CPU修改了数据,如果其他CPU有该数据,则通知其跟新数据;
写更新会导致大量的更新操作,因此在MESI协议中,采取的是写失效(即MESI中的I:ivalid,如果采用的是写更新,那么就不是MESI协议了,而是MESU协议)。
所以,现在常见的多核CPU写方式:写命中时,核内write back,核间write invalid + cache coherency protocol;写miss,先write allocated,再走前述的写命中流程。(write allocated和no-write allocated见评论区)
# cache line
cache line是cache与内存数据交换的最小单位,根据操作系统一般是32byte或64byte。在MESI协议中,状态可以是M、E、S、I,地址则是cache line中映射的内存地址,数据则是从内存中读取的数据。
工作方式:当CPU从cache中读取数据的时候,会比较地址是否相同,如果相同则检查cache line的状态,再决定该数据是否有效,无效则从主存中获取数据,或者根据一致性协议发生一次cache-to--chache的数据推送
工作效率:当CPU能够从cache中拿到有效数据的时候,消耗几个CPU cycle,如果发生cache miss,则会消耗几十上百个CPU cycle
# cache line的几种状态
MESI协议将cache line的状态分成modify、exclusive、shared、invalid,分别是修改、独占、共享和失效。
modify:当前CPU cache拥有最新数据(最新的cache line),其他CPU拥有失效数据(cache line的状态是invalid),虽然当前CPU中的数据和主存是不一致的,但是以当前CPU的数据为准
exclusive:只有当前CPU中有数据,其他CPU中没有改数据,当前CPU的数据和主存中的数据是一致的
shared:当前CPU和其他CPU中都有共同数据,并且和主存中的数据一致
invalid:当前CPU中的数据失效,数据应该从主存中获取,其他CPU中可能有数据也可能无数据,当前CPU中的数据和主存被认为是不一致的
对于invalid而言,在MESI协议中采取的是写失效(write invalidate)
# cache的操作
MESI协议中,每个cache的控制器不仅知道自己的操作(local read和local write),每个核心的缓存控制器通过监听也知道其他CPU中cache的操作(remote read和remote write),今儿再确定自己cache中共享数据的状态是否需要调整。
- local read(LR):读本地cache中的数据;
- local write(LW):将数据写到本地cache;
- remote read(RR):其他核心发生read;
- remote write(RW):其他核心发生write;
参考
【并发编程】CPU cache结构和缓存一致性(MESI协议)_厚积薄发者,轻舟万重山-CSDN博客 (opens new window)