面试问题浓缩总结 面试问题浓缩总结
  • Go
  • Java
  • C/C++
  • JavaScript/HTML
  • MySQL
  • Redis
  • MongoDB
  • 操作系统
  • 计算机网络
  • spring全家桶
  • mybatis
  • 中间件
  • 软件相关
  • 系统相关
  • 算法
  • 数据结构
  • 设计模式
  • CMU硕士经典100题
  • 剑指offer
  • 重点手撕代码
  • 程序员面试金典
  • 3月
  • 4月
  • 智力题
  • 业务问题
  • 一些技术
  • 安全相关
APP下载 (opens new window)
GitHub (opens new window)
  • Go
  • Java
  • C/C++
  • JavaScript/HTML
  • MySQL
  • Redis
  • MongoDB
  • 操作系统
  • 计算机网络
  • spring全家桶
  • mybatis
  • 中间件
  • 软件相关
  • 系统相关
  • 算法
  • 数据结构
  • 设计模式
  • CMU硕士经典100题
  • 剑指offer
  • 重点手撕代码
  • 程序员面试金典
  • 3月
  • 4月
  • 智力题
  • 业务问题
  • 一些技术
  • 安全相关
APP下载 (opens new window)
GitHub (opens new window)
  • 操作系统

    • 进程和线程
    • 互斥和同步
    • 死锁和饥饿
    • 内存管理
    • IO管理
      • Linux IO模式
      • linux IO流
      • select、poll、epoll
      • 零拷贝
        • 传统IO
        • DMA拷贝
        • 零拷贝
        • 应用场景
        • 总结
    • 其他
    • 面试问题整理
  • 计算机网络

  • 软件工程

  • 基础学科
  • 操作系统
小游
2021-03-20

IO管理

# Linux IO模式

linux有下面五种网络模式

  • 阻塞 I/O(blocking IO)

默认socket就是阻塞IO,当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据(对于网络IO来说,很多时候数据在一开始还没有到达。比如,还没有收到一个完整的UDP包。这个时候kernel就要等待足够的数据到来)。这个过程需要等待,也就是说数据被拷贝到操作系统内核的缓冲区中是需要一个过程的。而在用户进程这边,整个进程会被阻塞(当然,是进程自己选择的阻塞)。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。(阻塞IO这两个过程都会被阻塞)

  • 非阻塞 I/O(nonblocking IO)

    当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回(特点就是需要用户进程不断主动询问)

  • I/O 多路复用( IO multiplexing)

    其实就是下面要讲的select,poll,epoll,特点就是一个线程可以同时处理多个网络IO

  • 信号驱动 I/O( signal driven IO)

    这个不常用,可以不记

  • 异步 I/O(asynchronous IO)

    用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。(其实就是有一个回调操作)

参考: Linux IO模式及 select、poll、epoll详解 - SegmentFault 思否 (opens new window)

# linux IO流

image.png

下面这个图就很清晰了

image.png

Linux磁盘IO流程 - 简书 (jianshu.com) (opens new window)

# select、poll、epoll

select,poll,epoll都是IO多路复用的机制。I/O多路复用就是通过一种机制,一个进程可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。但select,poll,epoll本质上都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的,而异步I/O则无需自己负责进行读写,异步I/O的实现会负责把数据从内核拷贝到用户空间。

  • select

    int select (int n, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
    
    1

    select 函数监视的文件描述符分3类,分别是writefds、readfds、和exceptfds。调用后select函数会阻塞,直到有描述副就绪(有数据 可读、可写、或者有except),或者超时(timeout指定等待时间,如果立即返回设为null即可),函数返回。当select函数返回后,可以 通过遍历fdset,来找到就绪的描述符。

    select目前几乎在所有的平台上支持,其良好跨平台支持也是它的一个优点。select的一 个缺点在于单个进程能够监视的文件描述符的数量存在最大限制,在Linux上一般为1024,可以通过修改宏定义甚至重新编译内核的方式提升这一限制,但 是这样也会造成效率的降低。

  • poll

    int poll (struct pollfd *fds, unsigned int nfds, int timeout);
    
    1

    不同与select使用三个位图来表示三个fdset的方式,poll使用一个 pollfd的指针实现。pollfd结构体如下

    struct pollfd {
        int fd; /* file descriptor */
        short events; /* requested events to watch */
        short revents; /* returned events witnessed */
    };
    
    1
    2
    3
    4
    5

    pollfd结构包含了要监视的event和发生的event,不再使用select“参数-值”传递的方式。同时,pollfd并没有最大数量限制(但是数量过大后性能也是会下降)。 和select函数一样,poll返回后,需要轮询pollfd来获取就绪的描述符。

    select和poll都需要在返回后,通过遍历文件描述符来获取已经就绪的socket。事实上,同时连接的大量客户端在一时刻可能只有很少的处于就绪状态,因此随着监视的描述符数量的增长,其效率也会线性下降。

  • epoll

    epoll是在2.6内核中提出的,是之前的select和poll的增强版本。相对于select和poll来说,epoll更加灵活,没有描述符限制。epoll使用一个文件描述符管理多个描述符,将用户关系的文件描述符的事件存放到内核的一个事件表中,这样在用户空间和内核空间的copy只需一次。

    epoll对文件描述符的操作有两种模式:LT(level trigger)和ET(edge trigger)。LT模式是默认模式,LT模式与ET模式的区别如下:   LT模式:当epoll_wait检测到描述符事件发生并将此事件通知应用程序,应用程序可以不立即处理该事件。下次调用epoll_wait时,会再次响应应用程序并通知此事件。   ET模式:当epoll_wait检测到描述符事件发生并将此事件通知应用程序,应用程序必须立即处理该事件。如果不处理,下次调用epoll_wait时,不会再次响应应用程序并通知此事件。

    在 select/poll中,进程只有在调用一定的方法后,内核才对所有监视的文件描述符进行扫描,而epoll事先通过epoll_ctl()来注册一 个文件描述符,一旦基于某个文件描述符就绪时,内核会采用类似callback的回调机制,迅速激活这个文件描述符,当进程调用epoll_wait() 时便得到通知。(此处去掉了遍历文件描述符,而是通过监听回调的的机制。这正是epoll的魅力所在。)

    • 优点
    • 监视的描述符数量不受限制,它所支持的FD上限是最大可以打开文件的数目(select的最大缺点就是进程打开的fd是有数量限制的。这对 于连接数量比较大的服务器来说根本不能满足。虽然也可以选择多进程的解决方案( Apache就是这样实现的),不过虽然linux上面创建进程的代价比较小,但仍旧是不可忽视的,加上进程间数据同步远比不上线程间同步的高效,所以也不是一种完美的方案。)

三种IO模式对比

preview

参考:Linux IO模式及 select、poll、epoll详解 - SegmentFault 思否 (opens new window)

# 零拷贝

在讲零拷贝之前先说一下传统IO

# 传统IO

基于传统的IO方式,底层实际上通过调用read()和write()来实现。通过read()把数据从硬盘读取到内核缓冲区,再复制到用户缓冲区;然后再通过write()写入到socket缓冲区,最后写入网卡设备。

整个过程发生了4次用户态和内核态的上下文切换和4次拷贝,具体流程如下:

  1. 用户进程通过read()方法向操作系统发起调用,此时上下文从用户态转向内核态
  2. DMA控制器把数据从硬盘中拷贝到读缓冲区
  3. CPU把读缓冲区数据拷贝到应用缓冲区,上下文从内核态转为用户态,read()返回
  4. 用户进程通过write()方法发起调用,上下文从用户态转为内核态
  5. CPU将应用缓冲区中数据拷贝到socket缓冲区
  6. DMA控制器把数据从socket缓冲区拷贝到网卡,上下文从内核态切换回用户态,write()返回

img

从上面我们可以看到,一次简单的IO过程产生了4次上下文切换,这个无疑在高并发场景下会对性能产生较大的影响。

# DMA拷贝

因为对于一个IO操作而言,都是通过CPU发出对应的指令来完成,但是相比CPU来说,IO的速度太慢了,CPU有大量的时间处于等待IO的状态。

因此就产生了DMA(Direct Memory Access)直接内存访问技术,本质上来说他就是一块主板上独立的芯片,通过它来进行内存和IO设备的数据传输,从而减少CPU的等待时间。

但是无论谁来拷贝,频繁的拷贝耗时也是对性能的影响。

# 零拷贝

下面就是我们的重点了

零拷贝技术是指计算机执行操作时,CPU不需要先将数据从某处内存复制到另一个特定区域,这种技术通常用于通过网络传输文件时节省CPU周期和内存带宽。

那么对于零拷贝而言,并非真的是完全没有数据拷贝的过程,只不过是减少用户态和内核态的切换次数以及CPU拷贝的次数。

下面有几种常见的零拷贝技术

# mmap+write

mmap+write简单来说就是使用mmap替换了read+write中的read操作,减少了一次CPU的拷贝。

mmap主要实现方式是将读缓冲区的地址和用户缓冲区的地址进行映射,内核缓冲区和应用缓冲区共享,从而减少了从读缓冲区到用户缓冲区的一次CPU拷贝。(mmap也叫内存映射)

img

整个过程发生了4次用户态和内核态的上下文切换和3次拷贝,具体流程如下:

  1. 用户进程通过mmap()方法向操作系统发起调用,上下文从用户态转向内核态
  2. DMA控制器把数据从硬盘中拷贝到读缓冲区
  3. 上下文从内核态转为用户态,mmap调用返回
  4. 用户进程通过write()方法发起调用,上下文从用户态转为内核态
  5. CPU将读缓冲区中数据拷贝到socket缓冲区
  6. DMA控制器把数据从socket缓冲区拷贝到网卡,上下文从内核态切换回用户态,write()返回

mmap的方式节省了一次CPU拷贝,同时由于用户进程中的内存是虚拟的,只是映射到内核的读缓冲区,所以可以节省一半的内存空间,比较适合大文件的传输。

# sendfile

相比mmap来说,sendfile同样减少了一次CPU拷贝,而且还减少了2次上下文切换。

sendfile是Linux2.1内核版本后引入的一个系统调用函数,通过使用sendfile数据可以直接在内核空间进行传输,因此避免了用户空间和内核空间的拷贝,同时由于使用sendfile替代了read+write从而节省了一次系统调用,也就是2次上下文切换。

img

整个过程发生了2次用户态和内核态的上下文切换和3次拷贝,具体流程如下:

  1. 用户进程通过sendfile()方法向操作系统发起调用,上下文从用户态转向内核态
  2. DMA控制器把数据从硬盘中拷贝到读缓冲区
  3. CPU将读缓冲区中数据拷贝到socket缓冲区
  4. DMA控制器把数据从socket缓冲区拷贝到网卡,上下文从内核态切换回用户态,sendfile调用返回

sendfile方法IO数据对用户空间完全不可见,所以只能适用于完全不需要用户空间处理的情况,比如静态文件服务器。

# sendfile+DMA Scatter/Gather

Linux2.4内核版本之后对sendfile做了进一步优化,通过引入新的硬件支持,这个方式叫做DMA Scatter/Gather 分散/收集功能。

它将读缓冲区中的数据描述信息--内存地址和偏移量记录到socket缓冲区,由 DMA 根据这些将数据从读缓冲区拷贝到网卡,相比之前版本减少了一次CPU拷贝的过程

img

整个过程发生了2次用户态和内核态的上下文切换和2次拷贝,其中更重要的是完全没有CPU拷贝,具体流程如下:

  1. 用户进程通过sendfile()方法向操作系统发起调用,上下文从用户态转向内核态
  2. DMA控制器利用scatter把数据从硬盘中拷贝到读缓冲区离散存储
  3. CPU把读缓冲区中的文件描述符和数据长度发送到socket缓冲区
  4. DMA控制器根据文件描述符和数据长度,使用scatter/gather把数据从内核缓冲区拷贝到网卡
  5. sendfile()调用返回,上下文从内核态切换回用户态

DMA gather和sendfile一样数据对用户空间不可见,而且需要硬件支持,同时输入文件描述符只能是文件,但是过程中完全没有CPU拷贝过程,极大提升了性能。

# 应用场景

对于MQ而言,无非就是生产者发送数据到MQ然后持久化到磁盘,之后消费者从MQ读取数据。

对于RocketMQ来说这两个步骤使用的是mmap+write,而Kafka则是使用mmap+write持久化数据,发送数据使用sendfile。

# 总结

由于CPU和IO速度的差异问题,产生了DMA技术,通过DMA搬运来减少CPU的等待时间。

传统的IOread+write方式会产生2次DMA拷贝+2次CPU拷贝,同时有4次上下文切换。

而通过mmap+write方式则产生2次DMA拷贝+1次CPU拷贝,4次上下文切换,通过内存映射减少了一次CPU拷贝,可以减少内存使用,适合大文件的传输。

sendfile方式是新增的一个系统调用函数,产生2次DMA拷贝+1次CPU拷贝,但是只有2次上下文切换。因为只有一次调用,减少了上下文的切换,但是用户空间对IO数据不可见,适用于静态文件服务器。

sendfile+DMA gather方式产生2次DMA拷贝,没有CPU拷贝,而且也只有2次上下文切换。虽然极大地提升了性能,但是需要依赖新的硬件设备支持。

阿里二面:什么是mmap? - 知乎 (zhihu.com) (opens new window)

编辑 (opens new window)
上次更新: 2021/04/22, 17:24:44
内存管理
其他

← 内存管理 其他→

Theme by Vdoing | Copyright © 2021-2021 小游
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式